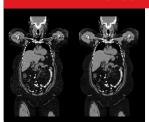
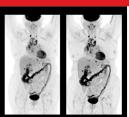


PET/CT

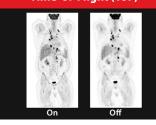

Defining the Need for Advanced Tools

"Scans with insufficient quality may greatly affect the treatment planning process, potentially resulting in the target receiving insufficient dosage and/ or extra toxicity to the organs-at-risk (OAR)s." 1

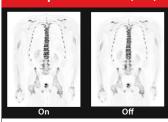
Advanced Tools for Radiation Oncology



Artificial Intelligence for CT3


- Advanced Intelligent Clear-IQ (AiCE) fully integrates Deep Learning Reconstruction (DLR) technology with sharp, clear, and distinct images, at low dose
- AiCE supports improved image quality and dose reduction

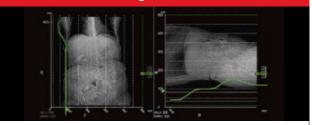
Artificial Intelligence for PET³


- Advanced Intelligent Clear-IQ Engine (AiCE) uses Deep Learning Reconstruction (DLR) for a next-generation approach to image reconstruction
- AiCE can be used to improve image quality and reduce scan times

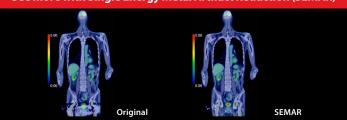
Time-of-Flight (ToF)

Can be used to improve image quality, optimize injected dose⁴, and improve scan time as compared to scans without TOF

Point Spread Function (PSF)5


Delivers high image quality and high quantitative performance with improved uniformity across the FOV

Clear Adaptive Low-noise Method (CaLM)6


- Preserves detail and lesion contrast while reducing overall image noise
- Superior performance in suppressing noise without time penalty compared to reconstruction without CaLM

Dose Management Features

- AIDR 3D Iterative noise reduction tool to help lower dose
- SURE Exposure Dose modulation tool for personalized dose management
- SURE kV Provides for an automatic kV selection based on the patient size and the target image quality level

See more with Single Energy Metal Artifact Reduction (SEMAR)

- Automated metal artifact reduction
- Robust performance
- No dose penalty
- Built into scan protocol or can be used retrospectively in raw data
- Standard advanced clinical application

Edge to Edge Field of View

Largest Standard Axial PET Field of View⁷

- 27 cm axial field of view for Cartesion Prime
- 19.6 cm for Celesteion

Extended FOV

- 85 cm Extended FOV for Celesteion
- 70 cm Cartesion Prime Extended FOV

CT Diagnostic Field of View

- 70 cm True FOV (Scan field-of-view)
- J Appl Clin Med Phys. 2021 Jun; 22(6): 198–223. Published online 2021 May 3. The application of metal artifact reduction methods on computed tomography scans for radiotherapy applications: A literature review Sathyathas Puvanasunthararajah^{1,2}, Davide Fontanarosa^{1,2}, Marie-Luise Wille^{2,3,4}, and Saskia M. Camps
- ²The clinical results, performance and views described are the experience of the clinicians. Results may vary due to clinical setting, patient presentation and other factors optional for Cartesion Prime, not available for Celesteion.

- ⁴Optimization of injected dose is only recommended within the dosing ranges that appear in approved drug labeling 5Optional for Celesteion
- ⁶Driessen RS, et al. J Am Coll. Cardiol 2019:73:161-73, figure adapted from table 4

⁷Based on competitive data at time of publication. Data on file

Follow us: https://us.medical.canon

@CanonMedicalUS

in Canon Medical Systems USA, Inc.

+CanonMedicalUS

CANON MEDICAL SYSTEMS USA, INC.

https://us.medical.canon | 2441 Michelle Drive, Tustin CA 92780 | 800.421.1968

©Canon Medical Systems, USA 2022. All rights reserved. Design and specifications subject to change without notice. Made for Life is a trademark of Canon Medical Systems Corporation.

Made For life