
Introduction 

Over the last few years, deep learning has been widely 
applied to magnetic resonance image reconstruction (1-10).  
It has been demonstrated that deep learning-based 
reconstruction (DLR) may provide performance gains when 
compared to conventional reconstruction methods (11). In 
MRI, a high resolution and signal-to-noise ratio (SNR) are 
desired clinically for better delineation of subtle anatomical 
and pathological features that are critical in making a clinical 
diagnosis. Higher resolution and SNR require longer scan 
times, which is often less desired in a clinical environment. 
Deep learning techniques may have great potential. Through 
the denoising process, image quality and SNR gain could 
assist clinicians in providing flexibility in scan parameters and 
be used to improve resolution and/or shorten scan time. 

In this paper, Advanced Clear-IQ intelligent Engine (AiCE) 
DLR was prospectively evaluated, in which the results suggest 
that AiCE DLR gains in image quality, denoising, and SNR may 
help clinicians in providing flexibility in scan parameters and 
be used to improve resolution and/or shorten scan time in 
comparison to images routinely acquired at the Institution.

Evaluation in a Clinical Setting

This prospective clinical study was performed in a clinical 
site in the USA, in which images acquired from 137 sequences 

in 40 patients (10 hips, 10 shoulders, 20 knees) were collected. 
The study was carried out on a 3T MRI scanner (Canon 
Vantage Galan) with approved IRB. Each sequence was 
imaged twice: first with a standard clinical protocol (reference 
sequence, or “REF”), then with a modified protocol that 
improved resolution by 48% and shortened scan time by 8%. 
The modified protocol was reconstructed with Advanced 
intelligent Clear-IQ Engine (AiCE) DLR (“DLR”) (10) and three 
other clinically used reconstruction filters (named NL2, GA43, 
and GA53) resulting in a total of five reconstructions for each 
sequence. As a blinded, randomized clinical image review, all 
reconstructions were de-identified and randomized before 
sharing with three experienced American Board-Certified 
MSK radiologists for review. Representative images for the 
reference images and images reconstructed with different 
reconstruction methods are shown in Figure 1, in which 
arrows indicate pathologies identified by one of the 
radiologists. 

For image quality assessment, radiologists were asked to 
assign scores of image quality based on the entire image and 
on specific anatomical and pathological features they 
observe in the image (Table 1). The reviewers were also asked 
to rank the images in order of preference for different 
reconstruction methods, in which 5 means the most 
preferred and 1 means the least preferred.

The average reader score was highest for DLR across all 
eight scoring criteria and the forced ranking compared to the 
other reconstruction methods (Figure 2).  
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Figure 1:  Representative images acquired with the standard clinical protocol (reference image, “REF”) and those acquired using a modified protocol 
for higher resolution and/or shorter scan time and reconstructed with DLR and conventional reconstructions (NL2, GA43, and GA53). Arrows represent 
pathologies identified by one of the radiologists.
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Figure 2:  Average scores of three musculoskeletal radiologist readers for the five reconstruction methods. DLR was rated significantly higher across all 
eight scoring criteria and the forced ranking compared to the other reconstruction methods.

Table 1:  Scoring criteria and scoring instructions

Overall Image Quality Assessment   
Assessment of Specific  

Anatomical & Pathological Features
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Overall Image 
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Overall Image 
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Diagnostic 
Confidence
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1
All structures are 

too noisy
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not sharp on  
most images

All structures are 
degraded

Diagnostic 
confidence is  
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A few structures 
are degraded on 

most images
Fair Fair Fair Fair Fair
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few images

Most structures 
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most images

A few structures 
are degraded on 

a few images
Good Good Good Good Good

5

There is no 
appreciable 
noise on any 
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image 
degradation 
on any of the 

relevant images
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Summary

AiCE DLR removes noise, hence improved SNR.* The SNR improvement may help clinicians in providing flexibility in scan 
parameters and be used to help alleviate the fundamental tradeoffs between SNR, resolution, and scan time. This prospective 
clinical evaluation showed that AiCE DLR may enable clinicians to increase resolution and/or shorten scan time while allowing 
preferred image quality.

The clinical results described in this paper are the experience of the authors. 
Results may vary due to clinical setting, patient presentation and other factors.
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*  AiCE provides higher SNR compared to typical low pass filters.
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