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Introduction 

In magnetic resonance imaging (MRI), there are 
inherent tradeoffs between signal-to-noise ratio (SNR), 
scan time, and resolution due to limitations imposed by 
MR physics. These tradeoffs are depicted in Figure 1A. For 
example, higher SNR and resolution are desired for better 
image quality and higher diagnostic confidence but they 
often come at the cost of longer scan time. Going to 
higher field strengths is one of the approaches to reduce 
the inherent tradeoffs. This is illustrated in Figure 1B. 
However, imaging at higher field strengths has several 
challenges such as increased equipment and operating 
cost, increased safety risks due to higher heat deposition 
to the patient, and increased image artifacts due to 
higher field inhomogeneities. Canon Medical Systems 
introduces Advanced intelligent Clear-IQ Engine (AiCE)1, 
which alleviates the fundamental tradeoffs between SNR, 
scan time, and resolution, as shown in Figure 1C. AiCE 
uses Deep Convolutional Neural Network (DCNN), a 
subtype of deep learning, which is trained to differentiate 
noise from the underlying MR signal. AiCE’s relation with 
the different subfields of AI is shown in Figure 2. AiCE’s 
architecture choices and training procedures are based 
on MR physics that allow the model to be interpretable 
and AiCE’s performance to be explainable. Furthermore, 
AiCE is designed with the goal to be robust to the wide 
variety of MR images acquired in the clinical setting. With 
the introduction of AiCE, the power of deep learning is 
translated into clinical practice to provide exceptional 
image quality across a wide variety of clinical 
applications.

Advanced intelligent Clear-IQ Engine 
(AiCE): An Overview

Deep Learning Overview
Deep learning2 has been successfully applied in many 

fields since 2012 after the introduction of AlexNet3, the 
DCNN, which won the ImageNet image classification 
competition by a large margin compared to traditional 
methods. In this competition, participants were 
challenged to classify a data set of 150,000 photographs 
into a thousand object categories given 1.2 million 
images and 50,000 images for model development. 
Traditional methods often involve complex hand-tuned 
feature engineering, which is time consuming and 
sometimes suboptimal. The DCNN approach, on the 
other hand, requires no hand-engineered features but 
rather the algorithm automatically learns the features by 
seeing many examples.

DCNN, a subtype of deep learning, consists of an 
“artificial” neural network with many linear and nonlinear 
processing layers. The multi-layer structure of DCNN was 
inspired by the structure of the biological brain, where 
the input is processed, perceived, and represented at 
hierarchical levels. The deeper layers of the DCNN 
represent higher abstractions of the input. A natural 
question to ask is, “how does a DCNN learn and produce 
such hierarchical representations?” Each convolutional 
layer consists of many “artificial” neurons, which perform 
simple linear computations including multiplication, 
addition, and nonlinear thresholding. Neurons in one 
layer are connected to the next layer via a set of 
connections called weights and biases. The weights and 
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biases are randomly initialized and then iteratively 
adjusted many times during training using 
backpropagation. By the end of the training process, the 
weights and biases are optimized to perform a specific 
task given the training data. 

Applications of deep learning have been growing 
rapidly in healthcare and medicine ranging from disease 
classification and/or detection, image segmentation, 
prognosis prediction, and image reconstruction. With the 
introduction of AiCE, the power of deep learning is 
translated into the clinical setting to overcome the 
limitations that inhibit conventional image reconstruction 
and correction methods from producing high quality 
clinical images.

Advanced intelligent Clear-IQ Engine (AiCE): 
Unique Implementation and Training Procedure

As shown in Figure 3, the key feature of AiCE’s network 
architecture lies in its transparency that results in an 
interpretable model with explainable performance. AiCE’s 
network components such as the feature transformation 
layer and the soft-shrinkage activation layer are designed 
based on prior research in signal processing, compressed 
sensing4, and image denoising5. In AiCE, the denoising 
steps are performed after the input images are 
transformed into a feature space using the discrete cosine 
transform. Another novel feature of AiCE is that it utilizes 
the “adaptive” soft-shrinkage activation layer, instead of 
the rectified linear unit activation layer which is 
commonly used in computer vision applications. Soft-
shrinkage is a non-linear thresholding operation that is 
commonly used in image denoising and compressed 

sensing. In contrast to the classical soft-shrinkage layer, 
the threshold level of the adaptive soft-shrinkage layer 
used in AiCE is learned during the training process. That 
allows AiCE to be adaptive and more robust to a large 
range of input noise compared to the non-adaptive 
network. These architecture choices allow AiCE to be 
transparent and its performance to be interpretable, 
which are crucial to gain trust from the users.

AiCE’s training is computationally intensive, however, 
the training is performed offline before the model is 

Figure 1. (A) Inherent tradeoffs between SNR, resolution, and scan time. (B) Higher field strength can reduce the triangular tradeoff 
but it is associated with several challenges such as increased equipment and operating cost, increased safety risks due to higher heat 
deposition to the patient, and increased image artifacts due to higher field inhomogeneities. (C) AiCE is able to alleviate the inherent 
and fundamental tradeoffs between SNR, scan time, resolution without the challenges associated with higher field strength. Note that 
the images are not necessarily drawn to scale.

Figure 2. AiCE uses a subtype of Deep Learning called DCNN.



3

deployed at the clinical scanner. During clinical use, the 
AiCE reconstruction is generally fast because there is only 
a single feed-forward computation. Such feed-forward 
computation is efficiently performed using a GPU and 
other modern computer hardware. Figure 4 depicts AiCE 
at deployment.

AiCE is designed to be robust to the many variations in 
MR clinical images caused by differences in scan protocol, 
imaging contrast, image SNR, body region, and field 
strength. In the AiCE architecture, a skip connection is 
applied to the zero-frequency component in the feature 
space that preserves the contrast of the input image. In 
other words, AiCE is robust to contrast variations coming 

from different field strengths and different clinical 
protocols. Noise removal is performed in the feature space, 
which protects the result from being affected by variations 
of spatial structure and contrast in the image. Geometric 
data augmentation further strengthens the robustness of 
AiCE to different body regions. Finally, noisy data 
augmentation is employed, in which images containing a 
range of clinically relevant noise levels are added into the 
training dataset. This training procedure enables the 
adaptive soft-shrinkage method to learn and adapt to the 
range of noise level and SNR observed in clinical setting.

Besides novel architecture and training procedure, 
preparing high quality training data is crucial for a 

Figure 3. AiCE Network Architecture and training.

Figure 4. AiCE at deployment. 
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Figure 5. A representative example of the high quality brain image that was produced by AiCE in clinically acceptable scan time. 
(Disclaimer: 10 NAQs is not clinically practical).

Figure 6. A representative example of the high quality knee image that was produced by AiCE in clinically acceptable scan time. 
(Disclaimer: 10 NAQs is not clinically practical).
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successful deep learning project. AiCE 
is designed to transform a low quality 
noisy image into a high quality image 
with reduced noise. High quality target 
training images were prepared using 
motion registration and averaging of 
MRI images acquired with multiple 
averages (NAQ). The long scan time 
and intense pre-processing used for 
training data preparation are 
impractical in routine clinical workflow. 
AiCE is trained to produce 
exceptionally high quality images that 
are comparable to high NAQ images, 
without the burden of long scan 
durations and computation times.  
This performance was previously not 
practical with conventional methods.

Advanced intelligent  
Clear-IQ Engine (AiCE):  
Robust Performance  
and Clinical Evaluation 

High quality MR images  
generated using AiCE

Examples of high quality images 
generated using AiCE are shown in 
Figures 5 – 10.

Clinical Validation
Clinical evaluation was carried out to 

validate efficacy and safety of AiCE in 
the clinical setting. Clinical AiCE 
images were reviewed by six American 
board-certified radiologists. Each 
radiologist reviewed tens of thousands 
of AiCE reconstructed images and 
compared with images reconstructed 
using conventional methods (NL2, 
GA43, and GA53). Specifically, the 
reviewers were asked to compare and 
score images in terms of overall image 
quality, image sharpness, image 
contrast, image noise texture, SNR, and 
lesion/pathology conspicuity. The 
Wilcoxon signed-rank test statistics 
shows that AiCE statistically 
outperformed conventional 
reconstruction methods (NL2, GA43, 
and GA53) in all of the graded criteria 

Figure 7. Examples of brain images without (left column) and with (right column) AiCE. High 
resolution and SNR images are obtained using AiCE in variety of contrasts and scan planes.

Figure 8. Examples of knee images without (left column) and with (right column) AiCE. High 
resolution and SNR images are obtained using AiCE in variety of contrasts and scan planes.
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Figure 9. 1.5 T vs. 3 T brain images from the same subject. 1.5 T images before (A, D) and after (B, E) AiCE in comparison to 3 T images (C, F).

Figure 10. 1.5T vs. 3 T Knee images from the same subject. 1.5 T images before (A, D) and after (B, E) AiCE in comparison to 3 T images (C, F).
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(P<0.05). As an example, the summary of overall image 
quality scores of brain and knee MRI are shown in Figure 11. 

Summary 

AiCE is a Deep Learning Reconstruction method that is 
designed based on the knowledge of signal processing and 
MR physics, which allows AiCE’s model to be interpretable 
and AiCE’s performance to be explainable. Furthermore, 
AiCE’s architecture and training procedure are designed to 
provide robust performance to many variations of MR data 

in a clinical setting. With the introduction of AiCE, the power 
of deep learning is translated to the clinic producing 
exceptional image quality.
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Figure 11. Overall image quality score of brain (left) and knee (right) MRI from six American board-certified radiologists. The Wilcoxon 
signed-rank test statistics shows that AiCE statistically outperformed NL2, GA43, and GA53 (P < 0.0001).
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