
of reconstruction, including improvements in noise, 
low contrast detectability, and spatial resolution 
preservation—making Ultra-High Resolution CT at 
standard doses available to the clinician. The combination 
of the Aquilion Precision and AiCE DLR provides new 
opportunities for advancement in patient diagnosis, 
clinical applications, as well as radionomics and represents 
the future of computed tomography.
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etc, were fully optimized in the AiCE algorithm. Elegant 
acceleration strategies and memory management 
technologies were carefully designed and integrated 
in the system to fully utilize hardware capabilities and 
maximize reconstruction speed. 

Putting the future in your hands

Integrated, effective, and easy-to-use, AiCE DLR brings 
the power of deep learning to the world of Ultra-High 
Resolution CT. The raw data domain aspects of AiCE DLR 
combined with the ability of the deep convolutional 
neural network to differentiate signal and noise leads 
to a wealth of advantages compared to other forms 

Introduction

The state-of-the-art in the field of Artificial Intelligence 
(AI) is a subfield of machine learning known as deep 
learning. Deep learning takes advantage of multi-
layered artificial neural networks to produce results 
that have taken the AI world by storm—outperforming 
even humans at tasks such as object recognition. In 
fact, deep learning has opened the door to a host of 
applications that are solving complex problems in our 
daily lives, from the navigation systems in our cars, to 
near-instant language translation applications on our 
phones, to automatic photo recognition and labelling 
on social media and much more. Unlike conventional 
algorithms that are constrained by pre-programmed 
rules for performing a complex task, deep learning occurs 
when a neural network learns from its own intensive 
training process and develops its own logic structure. 
Canon Medical is proud to introduce the AiCE (Advanced 
Intelligent Clear-IQ Engine), Deep Learning Reconstruction 
(DLR) algorithm for CT (Computed Tomography), featuring 
a deep learning neural network that can differentiate 
and reduce noise from signal, creating extraordinary high 
quality images. 

The goal of image reconstruction in CT is to facilitate 
the diagnosis of the patient by converting the raw 
projection data into an image of the highest possible 
quality. Prior to DLR, a reconstruction algorithm that 
produced exceptional low contrast detectability, 
preserved spatial resolution, and markedly reduced 
noise and artifact—without requiring an increase in 
radiation dose or hindering workflow—was a tool that 
remained elusive. Even the best Model-Based Iterative 
Reconstruction (MBIR) algorithms can suffer from poor 

AiCE Deep Learning Reconstruction:  
Bringing the power of Ultra-High Resolution 
CT to routine imaging

noise texture at low dose levels and reconstruction 
times that are workflow-prohibitive in a busy clinical 
environment. Canon Medical’s introduction of the Ultra-
High Resolution Aquilion Precision, capable of  
150 µm × 150 µm × 200 µm resolution, further 
motivated the need for development of next generation 
reconstruction technology—a fast, low noise algorithm 
able to preserve an extraordinary level of detail. The result 
is AiCE, a fully-integrated DLR that not only preserves 
the Precision’s extraordinary spatial resolution but 
also simultaneously improves noise and low contrast 
characteristics. With AiCE dose neutrality is achieved 
between Precision’s Ultra-High Resolution scan modes 
vs conventional resolution scanning reconstructed with 
traditional hybrid iterative reconstruction. Together, AiCE 
and Precision bring the power of deep learning and dose 
neutral* Ultra-High Resolution scanning to everyday use 
in the clinic, putting the future of CT in your hands.

Aquilion Precision and AiCE DLR

The Aquilion Precision was designed to visualize 
anatomy and pathology in routine imaging with double 
the level of detail of conventional resolution systems. The 
first major step in achieving such a fine degree of detail 
with the Aquilion Precision was the invention of a  
0.25 mm × 160 detector1. The Precision detector is crafted 
with proprietary cutting techniques that generate discrete, 
optically-isolated detector elements that allow for ultra-
thin septa which permit a substantial increase in light-
sensitive area on each element with minimal crosstalk.  
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Workflow Efficiency:  
Achieving the speed you need in a busy 
clinical environment

During engineering development, the AiCE DLR 
algorithm is taught to produce high signal-to-noise ratio 
(SNR) images through an intense training process. AiCE 
learns to differentiate signal from noise by training on 
select, high quality patient data sets acquired with high 
tube current and reconstructed with all the benefits 
of MBIR—including sophisticated system and noise 
models as well as a large number of iterations not 
possible clinically. Because this time-consuming training 
process is completed before leaving the factory, the fully-
trained AiCE DLR is able to work quickly in the clinic, 
reconstructing an Ultra-High Resolution 1024 × 1024 
abdominal case acquired with 0.25 mm slices quickly. This 
rapid reconstruction allows the clinician to take advantage 
of the benefits of deep learning, which by design 
incorporates the all sophisticated modelling utilized in 
MBIR, in a time-efficient manner: working at three-to-
five times the speed of MBIR reconstruction, AiCE DLR is 
making the benefits of low noise, Ultra-High Resolution an 
everyday reality. 

Like Canon Medical’s iterative reconstruction algorithms, 
AiCE is also fully integrated into the SUREExposure mA 
modulation system. The system automatically adjusts 
each individual patient’s mA profile based on the 
associated benefits and dose reduction abilities of 
AiCE reconstruction. AiCE DLR is available in three 
straightforward settings, Mild, Standard, and Strong, 
making the application of AiCE simple and easy-to-use.

Low Contrast Detectability:  
Dose neutral ultra-high spatial resolution 

AiCE DLR is able to dramatically decrease the 
magnitude of noise in an image, improving low contrast 
detectability. When used with the Aquilion Precision’s 
Ultra-High Resolution mode, which acquires data with 
a 0.25 mm nominal slice width and reconstructs to 
1024 × 1024 matrix, AiCE DLR can achieve the same 
low contrast detectability as conventional resolution 
images reconstructed with AIDR (Adaptive Iterative Dose 
Reduction) 3D. This combination of technologies opens 
up the advantages of Ultra-High Resolution imaging to 
the clinician without concern of low contrast detectability 
loss or increased radiation dose to the patient. 

Notice the visibility of the lesions on the Ultra-High 
Resolution image reconstruction AiCE at 12.4 mGy 
compared to the normal resolution image reconstructed 
with AIDR 3D at 11.8 mGy in Figure 1. Figure 2 compares a 
normal resolution AIDR 3D phantom image with an Ultra-
High Resolution AiCE phantom image at the same dose.

Spatial Resolution

Because AiCE is trained on images of the highest 
quality using MBIR reconstruction, AiCE DLR learns 
to preserve edge and maintain image detail, which is 
particularly important for Ultra-High Resolution scanning. 
The Aquilion Precision has a 0.25 mm × 160 detector and 
is paired with a new X-ray tube design, featuring reduced 
focal spot sizes, as small 0.4 mm × 0.5 mm, resulting in 

Figure 4 AiCE improves the MTF relative to AIDR 3D, indicating improved high 
contrast spatial resolution with AiCE.

Figure 5 Line pair phantom demonstrating 
superior high contrast spatial resolution 
for AiCE. A: AIDR 3D, B: AiCE
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This advancement, coupled with innovations in scintillator 
efficiency, detector circuitry and other DAS components, 
has led to the most dose efficient detector in Canon 
Medical history. The second key step in creating the 
Ultra-High Resolution Precision was a new tube system, 
featuring reduced focal spot sizes, as small 0.4 mm × 0.5 
mm and rotating at 10,800 rpm to efficiently dissipate heat. 
And, now, the third and final critical step toward routine 
Ultra-High Resolution CT is AiCE DLR, a fast reconstruction 

algorithm including both raw data and image domain 
components to reduce artifact and improve the signal-to-
noise ratio. The AiCE DLR features a highly-trained, multi-
layer neural network to reduce the magnitude of noise 
in high resolution images while preserving Precision’s 
detail. Together, AiCE and Precision bring the power of 
deep learning and dose neutral* Ultra-High Resolution 
scanning to everyday use in the clinic, putting the future 
of CT in your hands.

Figure 1 Improved liver lesion visibility on UHR CT images with similar radiation dose. AIDR 3D at 11.8mGy (A) compared to AiCE at 12.4 mGy (B).

Figure 2 Catphan® LCD module acquired with normal resolution mode, reconstructed with AIDR3D (A) and acquired in Ultra-High Resolution 
mode, reconstructed with AiCE (B).
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Figure 7 An illustration of a simple neural network consisting of layers of neurons 
working together to perform a task.

Figure 8 The structure of a basic neuron. A 
neuron will adjust the weighting 
factors (w) of its associated feature 
as it learns. The activation function 
(sigma) gauges the strength of the 
neuron response. 
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constraints. Using the estimation of error between the 
output of the DCNN and the gold standard, the DCNN 
backpropagates the error estimate through the network 
and adjustments are made to the neuron’s weights in 
order to reduce the discrepancy. This input-forward, 
error-backpropagation process is iteratively repeated 
until the network is optimized. In order to ensure optimal 
results, millions of image pairs were used in the training 
of AiCE DLR. This complex training process is completed 
in development with no off-site unsupervised training, 
which could alter algorithm performance, taking place.

In order to make sure AiCE DLR is robust in low dose 
situations AiCE’s training included low quality data 
sets, used to teach AiCE how to generate high quality 
images from low quality images while preserving signal 
and spatial resolution across the clinical spectrum. The 
algorithm was tested with independent validation 
datasets, to ensure wide applicability of the algorithm 
and avoid a phenomenon in machine learning known 
as overfitting, which occurs when an algorithm is too 
finely tuned to the training data to be robust against new 
inputs. Thousands of phantom and patient images were 
examined by medical physicists and radiologists in the 
development of the AiCE DLR reconstruction algorithm. 

Inside AiCE DLR 
The AiCE DLR applies the extraordinary classification 

abilities of a DCNN to the task of differentiating noise 
and signal in CT images and enhancing signal while 
suppressing noise to generate a high quality image for 
clinician interpretation. An overview of the AiCE DLR 
process is given in Figure 6. The AiCE reconstruction 
process begins in the raw data domain where AiCE 
analyzes the raw data and, armed with detailed scanner 
model information, makes modifications. These 

modifications in the projection domain improve output 
SNR and reduce artifacts, such as streaks. This raw data is 
then initially reconstructed to form a seed image, known 
as the “input layer”, to the DCNN. 

Once the input image is fed into the DCNN, it is 
analyzed by several network layers referred to as “hidden 
layers.” The hidden layers of a DCNN contain convolutional 
layers, in which the component neurons act as feature 
selectors on small patches of data. In a traditional heuristic 
algorithm explicit image features, such as a curved 
edge, would be pre-selected by the programmer and 
“convolved,” i.e., filtered, with the image data. During the 
deep learning process, each neuron in a convolutional 
layer learns what features to look for based on the training 
data. AiCE’s DCNN has thousands of neurons, thoroughly 
sampling feature space. The network “learns” image 
features and their level of importance by adjusting the 
parameters, known as weight and bias, utilized by each 
neuron in the convolutional layer. 

The output of the convolutional layer is the fed into an 
“activation layer.” In biology, a neuron only fires when the 
input to it surpasses a threshold. Similarly, the activation 
layer in a DCNN serves an analogous purpose in that, 
based on the strength of a neuronal response to the 
input data, the activation layer determines which neuron 
responses will pass to the next layer in the DCNN. After 
passing through all the hidden layers of the AICE neural 
network, the signal and noise are separated and a signal 
image, known as the output layer, is generated for the user. 

One key to a successful DCNN lies in its network 
structure design, which impacts both image quality and 
reconstruction speed. To achieve the best computational 
efficiency and improve output image quality, network 
structure factors such as number of network layers, 
number of neurons in each layer, convolution kernel sizes, 

examples. This ability to learn via a deep neural network 
gives the deep learning algorithm the freedom to find the 
optimum way to perform the desired task. DCNNs have 
shown extraordinary performance at image classification 
tasks, bursting onto the artificial intelligence scene in 2012 
by winning the ImageNet challenge—skillfully classifying 
one thousand object types from over one million images. 
A basic DCNN structure is illustrated in Figure 7.

AiCE DLR: Training
The key to a successful DCNN lies in its training, the 

process by which the DLR learns how to successfully 
perform its function. The network must compare its 
output image to a gold standard reference image in 
order to gauge its performance and learn, i.e. adjust the 
weights of its neurons. In order to do this the DCNN 
uses a mathematical loss function to determine the 
amount of error between its output and the reference 
datasets. In the case of AiCE, the gold standard clinical 
reference images are acquired with high tube current 
and reconstructed with true MBIR reconstruction, which 
takes into account modelling of the system optics, 
system physics, scanner statistical properties and human 
anatomy, and uses a greater number of iterations than 
could be otherwise used in a clinical setting due to time 

Figure 6 Overview of AiCE Deep Learning Reconstruction: The AiCE DLR is Trained with high quality, advanced MBIR Target Images and learns 
to turn low quality input data into low noise images that are sharp and clear. In the clinic, AiCE DLR operates in the raw and image 
domain to efficiently reconstruct images.

twice the spatial resolution of conventional systems. 
Because it incorporates the spatial resolution benefits of 

MBIR, AiCE improves high contrast resolution compared 
to hybrid iterative reconstruction techniques such as AIDR 
3D. This spatial resolution improvement is demonstrated in 
the Modulation Transfer Functions (MTF) in Figure 4. This 
spatial resolution improvement facilitates the visualization 
of fine detail, such as vasculature and fine pathology 
illustrated in Figure 5 using the line pair phantom. 

AiCE DLR: How Does it All Work? 

Deep Learning Overview
Deep learning, the latest in AI, has been successfully 

applied to such tasks as image recognition, segmentation 
and classification. With deep learning, a Deep 
Convolutional Neural Network (DCNN) comprised of 
layers of neurons is trained in the performance of a 
complex task. A neuron, illustrated in Figure 8, is a node 
where a mathematical operation takes place, the output 
of which is connected with other neurons, forming a 
network. The neural network derives its name from the 
neuron-synapse paradigm found in biology and mimics 
how humans draw conclusions, based on learning from 
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